Dynamic Power Factor Controller BR6000-T...

Power Factor Controller

Power Quality Solution

Manual
Version 6.0 E

CONTENTS

Section 1 General / type series and accessories 2
Section 2 Installation of the controller / connection diagram 4
2.1 Current measurement 5
2.2 Programming of phase-correction 2.3 Alarm output / error messages 6
Section $3 \quad$ Operating modes 6
Section 4 Automatic operation / display functions 7
Section $5 \quad$ Programming
5.1 Program menu 8
5.2 Programming lock 11
Section $6 \quad$ Manual operation / Programming of fixed stages 12
Section 7 Service menu 13
Section $8 \quad$ Expert mode 13
8.1 Expert mode 1
8.2 Expert mode 2 14
Section $9 \quad$ Control principle 15
Section 10 Interface 16
Section 11 Initial operation 16
Section 12 Maintenance and warranty 16
Section 13 Troubleshooting 17
Section 14 Technical data 18
Annex: Annex $1 \quad$ Table of control series 19
Description of control-series editor 20Annex 2 Default settings
Annex 3 Controller coupling 1 21
Annex 4 Application with MMI6000 22
Annex 5 Mixed dynamical compensation Controller coupling 2 23
Annex 6 MODBUS protocol 23
Annex 7 Windows-software 24
Annex 8 Operating diagram (fast programming) 25

Section1 General

The dynamic power factor controller BR6000-T.. represents the consequent development of the BR6000-series with new innovative ideas and a multitude of functions-now in V6. It has been especially designed to control thyristor modules for dynamic switching of power capacitors for power factor correction (for example TSM-LC or similar). By using a very fast type of processor, it has been possible to obtain extreme short switching cycles which allows the usage for dynamic power factor correction.

In addition to a switching time of $<20 \mathrm{~ms}$, the intelligent control principle provides an extremely fast tuning of the power factor by simultaneous switching of several steps.
Several parameters that can be edited allow an optimized adjustment to different thyristor modules.
The BR 6000-T.. is distinguished by user-friendly operation based on menu-guided displays in plain text. Its new features permit an intuitive mode of operation. Easy-tounderstand symbols and texts in 10 local languages combine simplest operability with self-evident displays.

Main features:

- Six or 12 switching outputs (depending on the type)
- Measuring voltage of $30 \ldots 525 \mathrm{~V}$ (L-N) or (L-L)
\square Supply voltage 110... 230 VAC
v 20 pre-programmed control series with a self-optimized intelligent control response
\square Control-series editor for user-defined control series
\checkmark Complete menu-guided operation and display (10 languages)
■ Illuminated graphic display with 2×16 characters
- Four-quadrant operation
\checkmark Display of various line parameters (V, I, F, Q, P, S...)
\square Display and monitoring of temperature
■ Monitoring of capacitor power values with accessory MMI6000
\square Storage of maximum line-parameter
- Manual / automatic operation
\square Programming of fixed stages and the option of skipping individual outputs
V No-voltage turn-off
\checkmark Error detection for various states and interference-message output
\square Complete 2nd parameter set programmable / switchable
\boxtimes Switchboard-integrated housing $144 \times 144 \times 55 \mathrm{~mm}$

Type series and accessories

BR6000-T6	6 transistor outputs, 1 alarm relay
BR6000-T12	12 transistor outputs, 1 alarm relay
BR6000-T12/S	- additional message relay, - external input (e.g. for second parameter set) - additional interface RS485; controller coupling possible
Accessories	- MMI6000 - MultiMeasuringInterface (for measurement of inherent current of capacitor bank)
	Interface converter "RS485 to USB" for PC-connection - Interface converter "RS485 to RS232" for older PCs

The controller is supplied as standard for an operating voltage of $110 . . .230 \mathrm{VAC}(+/-15 \%)$, a measuring voltage of $30 \ldots 525$ VAC (L-N) or (L-L) and a measuring current of 5A or 1A. (programmable). A voltage converter is required for different operating voltages.

Caution!

Fig. 2 BR6000-T rear view

Section 2 Installation and connection of the controller

The BR6000 is designed to be incorporated into the front panel of a PFC-cabinet. It requires a switchboard section of $138 \times 138 \mathrm{~mm}$ to DIN 43700/ IEC 61554. The controller is inserted from the front and is attached by means of the appended clamps. The controller may be inserted only by qualified technicians and must be operated in accordance with the specified safety regulations.
Before the BR6000 is connected up, all leads and cables must be checked to ensure that no current is flowing through them and the current converter must be short-circuited. Care should be taken to ensure that the measuring voltage and current are in the correct phase position. The measuring-current circuit must be wired with copper leads of $2.5 \mathrm{~mm}^{2}$. The connection should be set up as shown in Fig. 3. The specified safety regulations must be observed.
The measuring voltage may lie in the range from $30-525 \mathrm{~V}$ and can be connected between $\mathrm{L}-\mathrm{N}$ (default) or between L-L. (programming of phase correction needed).

The operating voltage is $110 \ldots 230 \mathrm{~V}+/-15 \%$ and can be connected between $\mathrm{L}-\mathrm{N}$ or L-L. (depending of the grid)

Fig. 3: BR6000 Connection plan

2.1 Current measurement

When installing the current converter, care should be taken to ensure that the load current flows through it. The outputs of the compensation network must be installed behind the current converter (in the direction of current flow). If the BR6000 is connected up via sum-current converters, the overall conversion ratio is entered.

Example:
C.converter 1: 1000/5A
C.converter 2: 1000/5A

Sum-current converter: $5 A+5 A / 5 A$
C.converter ratio is: 2000/5A

Measurement via sum current converter

2.2 Programming of phase-correction-e.g. connection directly L-L (400V)

Adjustment of phase-correction between voltage and current in the meas. system is done in expert mode 1 (page 14)

Example:
Meas.current: L1
Meas. Voltage L3-L2
Phase U/I [90°]

using	meas. current	meas. voltage	phase-angle
preset	L1	L1-N	0°
	L1	L1-L2	30°
	L1 (k<-> ${ }^{\text {) }}$	L2-N	60°
example	L1	L3-L2	90°
	L1	L3-N	120°
	L1	L3-L1	150°
	L1 (k<-> ${ }^{\text {a }}$)	L1-N	180°
	L1 (k<->l)	L1-L2	210°
	L1	L2-N	240°
	L1	L2-L3	270°
	L1 ($k<->\mathrm{l}$)	L3-N	300°
	L1 (k<->I)	L3-L1	330°

2.3 Alarm output / error messages

The alarm contact is closed in normal operation and opens in the event of a fault. The relevant fault is simultaneously shown on the display in plain text (alternating with the standard display in automatic operation). The following fault messages are displayed:

UNDER-COMPENSATED
OVER-COMPENSATED OVERCURRENT MEASURING VOLTAGE ? OVERTEMPERATURE OVERVOLTAGE UNDERVOLTAGE HARMONICS

Display and relay output
Display and relay output Display and relay output Display and relay output Display and relay output Display and relay output Display and relay output Display and relay output

Additionally several messages for different operation states are generated. An individual adjustment resp. suppression of particular messages is possible in expert mode 2. During suppression, the indication of the message in the display, a possible release via alarmrelays and effects on the controlling process will be prevented.

Section 3 Operating modes

When the operating voltage is switched on, the BR6000 briefly displays its designation and software version, then changes to its normal operating status (automatic operation).

Automatic operation

The control direction is symbolized by a closed arrow
(Connecting-in
Connecting-out
The connecting-in arrow is always located after the maximum possible number of stages (end stop)

An open arrow indicates that the required blocking time (discharge time) is running before an impending switching step

F A double arrow symbolizes fast

Repeated pressing of the "Operating Mode" key takes the user to the various menus in sequence: Automatic operation - Programming - Manual (manual operation)Service - Expert mode and back.

Section 4 Automatic operation - display of network parameter

The BR6000 is set to automatic operation as standard. Capacitor stages are then automatically connected in or out in order to reach the target power factor. This happens when the required reactive power exceeds the value of the smallest capacitor stage. In automatic operation, various network parameters can be displayed by repeatedly pressing the "ENTER" key:

1 ITE VDTASE

The power value specifies the total power (3-phase) assuming symmetrical load. If no key is pressed for 60 seconds, the display automatically returns to the operating status!

Switching outputs

The switching outputs of the BR6000T are executed as transistor outputs.

The transistor outputs are used via an additional auxiliary voltage (10-24 VDC) for a direct triggering of thyristor switches for the dynamic power factor correction (i.e. TSM).

Max.current for a single output: 40 mA Sum current all 6 outputs: 150 mA

WARNING: Mixing-up of outputs and thus applying of 230 VAC on the transistor outputs will destroy the internal transistors !

Section 5 Programming

Pressing the "Operating mode" key once takes the user from automatic operation to Programming mode.
The upper display always shows the parameter and the lower one the set value. The values are changed by pressing the \uparrow / \downarrow keys. Subsequent pressing of the "ENTER" key stores the value and takes the user to the next parameter.
To quit programming mode in any step, press the "Operating mode" key.

5.1. Program Menu

LANGUAGE SELECTION: This selects the language of the operating menu (German, English, Spanish, French, Russian, Czech, Dutch, Polish, Portuguese, Turkish)

1 I-CONVERTER PRIM: [5...13000]A
This selects the primary current of the current converter. Adjustment is via the \uparrow / \downarrow keys. Save and continue with ENTER

2 I-CONVERTER SEC: [5 or 1]A
This sets the secondary current of the current converter Selection via \uparrow / \downarrow. Save and continue with ENTER

3 END STOPP:
[$1 . . .6$ or $1 . . .12$]
By setting the end stopp, the number of active capacitor branches is matched to the respective capacitor bank. This is done via the \uparrow / \downarrow keys. The visible symbols of the capacitors correspond to the connected outputs. The maximum possible number of capacitor branches is preset at the works (BR6000-T12:12 branches). Save and continue with ENTER

4 CONTROL SERIES: [$1 . . .20+\mathrm{E}]$
The ratio of the capacitor branch power determines the control series, the power of the first capacitor always being assigned the value 1. The control series required for the compensation network is again selected via the \uparrow / \downarrow keys. If the required control series should exceptionally not be present (Annex 1), the user may define a special one (control series " E "). More on this point in the control-series editor in Annex 1.
Save and continue with ENTER
5 CONTROL PRINCIPLE: The control preference may be selected here:

SEQUENTIAL connection LOOP connection INTELLIGENT Ioop connection (default setting) COMBINED CHOKE

See Section 9 for an explanation of the various control modes. Selection with \uparrow / \downarrow keys. Save and continue with ENTER

6 POWER 1. STAGE: [0.01 ... 255.99] kvar

To determine the controller's response sensitivity, the dimensions of the network's smallest capacitor (stage 1) must be known. They are entered in two steps in kvar. The integral kvar values (before the comma) are initially selected via the \uparrow / \downarrow keys and saved with ENTER. The positions after the comma are then selected, again via the \uparrow / \downarrow keys. If the response sensitivity of the BR6000 is being undercut, a warning will occur (indication of "!" in the display)
Save and continue with ENTER

7 TARGET COS PHI: [0.3 ind ... 0.3 cap]

By setting the target cos phi, the power factor to be attained via the PF correction is defined. It is also set via the \uparrow / \downarrow keys.
Save and continue with ENTER
8 MEASURING VOLTAGE [$30 \ldots 525$] V
Programming the measuring voltage. The values programmed here always refer to the voltage at the clamps of the BR6000!
The voltage is selected via the \uparrow / \downarrow keys. Save and continue with ENTER.
9 V-CONVERTERRATIO [NO] possible: 230V...380kV/Vmeas.
When a measuring-voltage converter (e.g. for HV- measurement) is used, its conversion ratio should be programmed here:

- Direct programming of the prim. voltage of the voltage converter
- - The sec. voltage is set automatically from the programmed meas.voltage under 8 Selection via the \uparrow / \downarrow keys. Save and continue with ENTER.

10 CONNECTING TIME
[20...1000]ms
This refers to the time between connecting the capacitors to increase the momentary network capacitance. It should be noted that in practical operation the real connection time is affected by the discharge time (locking time).
Default setting: 1000 ms
Selection is performed via the \uparrow / \downarrow keys. Continue with ENTER

11 DISCONNECTING TIME [$20 \ldots 1000$]ms

This refers to the time between disconnecting the capacitors to reduce the momentary network capacitance..
Default setting: 1000 ms
Selection is performed via the \uparrow / \downarrow keys. Continue with ENTER
12 DISCHARGE TIME [$20 \ldots 1000$]ms
This is the time for which an individual output is blocked between connecting and disconnecting. This blocking time has priority over connecting and disconnecting times. It depends on the capacitor discharge rating and thus is specified by the compensation network.
Default setting: 200 ms
Selection is performed via the \uparrow / \downarrow keys. Continue with ENTER
13 ALARM TEMP
$[50 . . .85]^{\circ} \mathrm{C}$
The alarm temperature programmed here is the temperature at which the capacitor stages are disconnected in steps. The controller's alarm relay responds after 60 seconds. At the same time the display shows the cause of the alarm (over-temperature). If the temperature drops again, the required branches are automatically re-connected in steps.
The selection is performed with the \uparrow / \downarrow keys. Save and continue with ENTER.
14 MESSAGE RELAY (available only at version -T12/S)
The message relay can be programmed for one of the following options as required:
"OFF"
"External cap." Relay switches an external static stage with respect of a discharge time of 40 sec .
"Fan": Relay switches the external cabinet fan.
The switching threshold can be programmed under point 15. Display: "F"
"Supply": Message when active power is supplied. Display: "S"
"Undercurrent":This message appears whenever the measuring current is not reached. Display: "U" The signal is generated when the value drops below the response sensitivity of the controller.

```
"Harmonics": Message appears when the limit of THD-V is exceeded. Can be set in "28 Harmonics" in\%
"Remote control R1": Coupling of two controllers via remote control input, \(\mathrm{R} 1=\) Controller is configured as controller 1 (master)
```

"Remote control R2": Coupling of two controllers via remote control input, R2 = Controller is configured as controller 2 (slave). Description for the coupling of two controllers can be found in annex 3 . When this function is selected, the input cannot be used for signal '2nd parameter set' and the output cannot be used for the fan.

Selection is via the \uparrow / \downarrow keys. Save and continue with ENTER.

```
16 External Input* (OFF / 2nd PARAMETER SET / EXTERNAL ERROR/ COUPLING)
    * only applicable for controller types -12/S
    * not active if message relay is programmed as "external Cap" or "RemoteControl"
```


2nd PARAMETER SET:

As a standard, the values of the 2 parameter set are equal to the values of the normal parameters. By changing particular parameters, for example the cos-phi can be switched. Other possible applications may be switching of current transformer or switching of switching times.
By triggering of a 24VDC-signal at the external input, the 2nd parameter set will be activated with the following values:
17. I-converter prim, 18. I-converter sec. 19. End stopp, 20. Control series,
21. Control principle, 22. Power 1.stage, 23. Target cos-phi, 24. Switch-on time,
25. Switch-off time, 26. Discharge time

ㄹ The values of the 2nd parameter set and the indication of activation is marked with this symbol in the display.

EXTERNAL ERROR:

In this mode an external triggering signal(24VDC) will switch-off all stages in the system step by step accordingly the programmed control serie. (e.g. Remote switch-off)

COUPLING OPERATION: (Annex 3)
Coupling of 2 systems via interface (LAN-cable)
27 DELAY-TIME OF ERROR-MESSAGES [0...255] sec.
The delay time for error-messages in the display can be changed here. Default: 20 sec .

28 HARMONICS (harmonic limit) [7]\% (0.5...25.5)\%
A limit for THD-V (in\%) can be entered here. When this threshold is exceeded, a message is given. THD-V is the ratio of the geometric sum of the uneven harmonics to the fundamental.

BASIC SETTING: [YES / NO]

When the selection is made with YES and confirmed with ENTER, all parameters are reset to the basic setting made by the PFC-system manufacturer.
(Optimal network values when the controller was supplied with a complete PFCsystem). If the controller is supplied from the works, this point corresponds to the default setting. CAUTION: All user settings are lost!

Programming is now completed. The controller has returned to point 1 of the programming menu.

5.2 Programming lock

The BR6000 is equipped with a programming lock to ensure protection from unauthorized or inadvertent changes to the system parameters. The lock can be activated in expert mode. If the lock is active, all parameters can be checked but not changed.

Section $6 \quad$ Manual operation (initial operation, maintenance, service) Programming of fixed stages

In manual operation, capacitor branches can be connected/disconnected in the set control series and switching time - irrespective of prevailing power-line conditions. The starting condition is STOPP (no stages connected). Connections are made by pressing the \uparrow key. Pressing \downarrow initially leads back to STOPP mode. Repeated pressing of \downarrow leads to the disconnection of stages. The active operating status and active power factor are always shown on the display (self-explanatory).

Manual operation

```
GAP OU O. }97\textrm{TN
    **:"#
```


Pressing ENTER takes the user to the menu point "Programming of fixed stages". In the normal case, all stages are programmed for automatic operation (default setting).

Setting of fixed stages

In special cases, all controller outputs (C1 - C12) may be permanently defined in succession (continued switching via ENTER) for the following statuses:

OFF: The output is continuously disconnected - e.g. for temporarily disconnecting a defective capacitor. The capacitor symbol for this output is faded out. Underlining appears.
AUTO: Automatic (normal) operation
The relevant output is marked by a capacitor symbol.
FIXED: The output is continuously connected, e.g. for fixed PFC. The output is marked by an underlined capacitor symbol.
TEST: short-term switch-on of individual outputs possible for test purpose

The active stage is blinking. The required status is set via \uparrow / \downarrow. By pressing ENTER, the user saves this step and moves to the next stage.
The programmed statuses for the outputs also remain visible on the display in automatic operation.
After the required settings have been made, pressing the "Operating Mode" key takes the user to the next menu ("Service") or further to "Automatic Operation".

Section 7 Service menu

The service menu is reached by the operating-mode key.
The stored maximum values of the network parameters can be displayed here.
In addition, a fault memory is available, in which the last 40 fault states of the system are stored with fault code and in plain text. (This allows, for example, capturing short lived events of overtemperature or overvoltage)

Action	Display	
ENTER	1 min./max. VOLTAGE	in $\mathrm{V} \quad$
ENTER	2 max. REACTIVE POWER	in kvar $/ \%$
ENTER	3 max. ACTIVE POWER	in $\mathrm{kW} \quad / \%$
ENTER	4 max. APPARENT POWER	in kVA $/ \%$
ENTER	5 max. TEMPERATURE	in ${ }^{\circ} \mathrm{C} \quad /{ }^{\circ} \mathrm{F}$
ENTER	6 RESET the maximum values	
ENTER	ERROR MEMORY E [1] $-\ldots$.	in plaintext
ENTER	ERROR MEMORY RESET	
ENTER	Back to 1	

Section 8 Expert mode 1 and 2

The expert mode is meant for the adjustment of values which normally should not be changed. As a protection against mal-operation this level has an access code branching out in Expert mode 1 or 2.
Password: Expertmode 1:"6343" Expertmode 2: "2244"

8.1. Expert mode 1

2 BASIC SETTING NEW
 [NO]
 (available: NO/YES)

Storage of active programming as a new basic setting.
Caution: The original values are overwritten in the process!
3 SWITCHING POWER max [100] kvar (multiples of the smallest stage)
This factor specifies the maximum power which may be switched in one switching step. It can be used to control the intelligent control system, which switches several stages as a function of the power-factor requirement.

4 SWITCH.TRIGGER
[66]\%
(30...100\%)

Threshold for switching on of next stage. It should not be changed in the normal case!

5 OPERATING LOCK [NO] (NO / YES)
6 PHASE I [0°]
[L1] - L1 - N Adjustment of current phase position
7 PHASE U [$\left.0^{\circ}\right]$
L1 - [L1 - N] Adjustment of voltage phase position
Phase correction between voltage and current in the measuring system.
This setting allows to measure also in systems without neutral.(example p.5)

Range for entering the stage outputs can be increased here (e.g. HV-measuring)
9 CONTROL[3] PHASE
(3/1)
The measuring system of the controller is generally based on single-phase measurement. For all standard settings (three-phase), the measurement is converted and all outputs displayed as three-phase values (symmetry in grid assumed). In the single-phase setting, display and control apply only to the singlephase value measured.

10 DISPLAY [cos Phi] (cos Phi/tan Phi)
Changeover between cos/tan Phi for all displays and calculations in the device
11 HARMONICS [NO] (NO/YES)
Release of calculation and display of harmonics.
12 PROTOCOL *only with option -T12/S (interface)

$[------$]	Interface OFF
[MODBUS RTU]	MODBUS protocol for individual usage
[ASCII OUT]	output of grid-values as ASCII-file (s.page 16)
[MASTER HYBRID]	operating mode as master in hybrid-systems (Annex 4)
[MASTER MMI]	using the MMI6000for measurement of real PFC-current (switching time has to be $>200 \mathrm{~ms}$)

Depending on the protocol selection, the appropriate configuration-menu is offered:

13	BAUD RATE	$[38400]$	$(4800 \ldots 38400)$	Transmission rate
14	Number of MMI	$[1]$	$(1 \ldots 9)$	Nos of connected MMI
15 ADDRESS	$[1]$	$(1 \ldots 32)$ Address		
16	UPPER VALUE	$[115] \%$	$(110 \ldots 200 \%)$	Switch. threshold MMI
17	LOWER VALUE	$[60] \%$	$(40 \ldots 90 \%)$	Switch. threshold MMI
18	TEST ATTEMPT	$[10]$	$(3 \ldots 255)$	
19	TEST-TIME	$[10]$	$(3 \ldots 255)$	
20 ASCII time	$[10] s e c$.	$(1 \ldots 255 \mathrm{sec})$	Repetition-time ASCII	

8.2. Expert mode 2 (Password: 2244)

The additional 2nd expert mode includes all messages for operation, warning and error which are displayed by the BR6000. Here they may be deactivated separately. When deactivated, the indication of the message in the display as well as possible activation of the relay or effects on the control behavior are suppressed.

EXPERT MODE 2 [YES] (YES/NO)

Activation of particular operation, warning and error messages (list of all messages in menu plan last page) - 20 messages in total

2 ALARM TIME
[120] sec. (1... 255 sec .)
Time after which the alarm relay will respond

3 UNDERVOLTAGE

4 OVERVOLTAGE
[50] \% (20...100\%)
meas. voltage below this threshold will switch OFF all stages at the same time
[115]\% (105...140\%)
meas. voltage above this threshold will switch OFF the stages step by step

5 FREQUENCY
 [40...80]Hz (50Hz/60Hz)

Measurement by the controller is done automatically in grids of $40 \ldots 80 \mathrm{~Hz}$.
In grids with extremely poor voltage quality it is recommend to select a fix frequency (50 or 60 Hz) to avoid measuring errors due to voltage sags.

Section 9 Control principle

The control response of the BR6000 can be selected in programming mode. In principle, the controller has four different control modes:

1. Sequential connection

In sequential connection, the required capacitor stages are successively connected and disconnected in stages (last in - first out). The ranking of each step always corresponds to the power of the smallest stage.
Advantage: Exact definition of the next capacitor to be connected in each case Disadvantage: Long settling time, high switching frequency of the small stages

Abstract

In order to shorten the settling time, the BR6000 switches several stages simultaneously for a large power-factor requirement. This applies to all control types. The maximum dimensions of the simultaneously switching branches can be changed in expert mode. If the value of the smallest stage is pre-selected, the conventional sequential connection is obtained.

2. Loop connection

In this variant, the controller operates in loop mode (first in - first out) which minimizes the wear on the capacitor bank, i.e. where stages are of equivalent dimensions, the stage which was disconnected for the longest period of time is always connected next.
Advantage: Balanced utilization of equivalent stages and thus an increased operating life of the capacitor bank.
Disadvantage: This mode can only be used in control series with groups of the same stage power and long settling time, as every switching step corresponds to the value of the smallest stage.

3. Intelligent loop connection (default setting)

The intelligent control principle combines the advantages of the network-sparing loop connection (first in - first out) with a much faster settling time, even for large load skips, and reaches this goal with the fewest possible switching operations of the capacitor stages. The optimized time response is achieved by the simultaneous switching of several or larger capacitor groups as a function of the missing power factor in the power line. Both the number of real switching frequencies of the capacitors as well as the turn-on times of the branches are considered.
Advantage: Reaches the target cos phi in a fast-optimized settling time with a low switching frequency of the capacitors.

4. Combined de-tuning (special case for combined de-tuned banks)

Within a combined de-tuned application, 2 adjoining equal steps are switched with just one joint choke. This pairwise de-tuning requires an appropriate closed control series (i.e. $1: 1: 1: 1 \ldots, 1: 1: 2: 2 \ldots, 1: 1: 2: 2: 4: 4 \ldots$ or similar)
The condition for the switching behavior is defined in such a way that the number of activated odd steps is always greater than or equal to the number of activated even steps. The controller complies with the requirements of the control regime while largely conforming to the intelligent switching behavior.

Section 10 Interface *(option)

The BR6000-T12 is equipped with an RS 485 interface as an option. It can be used to implement the following functions:
\square Full parametrization of the controller via a PC F
$\checkmark \quad$ Remote read-out of all parameters during operation and displays via a PC Display, logging and analysis of all grid parameters with software "BR7000-Soft" for Windows
\square Connection of system accessories e.g. remote display or data-logger
$\square \quad$ Selection of MODBUS (see Annex) or ASCII (see table below) for permanent display of grid parameters in ASCII format). Any ASCII editor can be used.
\square Using with MMI6000 e.g. for measurement of inherent current of capacitor bank

The following data are permanently displayed and refreshed via ASCII (ASCII Protocol):

Voltage	e.g.	"230 V"	
Current	e.g.	" 85 A"	
Power factor	e.g.	"-0.98"	minus means: CAP
Reactive power	e.g.	"100 kvar"	
Active power	e.g.	"100 kW"	
Apparent power	e.g.	"100 kVA"	
Outputs	e.g.	"XXX--------"	means: 3 steps activ

For the bus-connection a shielded cable has to be used!
Bus-connections (in and out) have always to be made directly to the relevant device! In case of "point-to-point" connection the terminating resistors inside the connected devices have to be activated (DIP-switch ON).

Section 11 Initial operation

The controller must have been installed before being set up and operated.
All network-specific parameters are fully programmed as described in section 5 (Programming) by being entered in sequence and stored. The controller is then set to automatic operation with the operating mode key. It is now ready for operation.

Section 12 Maintenance and warranty

The BR6000 should need no maintenance if the operating conditions are observed. However, it is recommended that a functional check of the controller be performed in conjunction with the regular checking of the capacitor bank. In the event of any interventions in the controller during the warranty period, all warranty claims lapse.

Section 13 Troubleshooting

Fault	Check / Solution
At target cos phi=1 and inductive load, switch-off or connection of capacitor in the corrected line Supply / Drawing mismatched Wrong line cos phi is displayed	Check terminals of the measuring voltage and current (I and k)! Check phase position
Display:"UNDER CURRENT"	See above
	Current in measuring range? Line interruption? Wrong current-converter factor? Display: "OVERCURRENT"
Current transformer short-circuited?	
Alarm relay: after 1 min.	Check current-converter ratio
Go through measuring current range	

Section 14 Technical data

Type series	BR6000-T ...
Outputs	6 or 12
Languages	G / E / ES / RU / NL / CZ / PL / F / PT/ TR
Switching power of outputs	24 VDC, appr. 40 mA for triggering TSM-LC
Number of active outputs	Programmable
Operation and display	Illuminated graphic display 2×16 characters with convenient operating level
Number of control series	20
User-defined control series	1
Control principle	Sequential connection, loop connection or self-optimized switching response Four-quadrant operation
Operating voltage	110... $230 \mathrm{VAC},+/-15 \%, 50 / 60 \mathrm{~Hz}$
Measuring voltage	30... 525 VAC, (L-N) oder (L-L), $50 / 60 \mathrm{~Hz}$
Measuring current	X: 5/1A selectable
Power drawn	< 5 VA
Sensitivity	$50 \mathrm{~mA} / 10 \mathrm{~mA}$
Target cos phi	0.3 inductive to 0.3 capacitive adjustable
Connecting time	Selectable from $20 \mathrm{~ms}-1 \mathrm{sec}$.
Disconnecting time	Selectable from $20 \mathrm{~ms}-1 \mathrm{sec}$.
Discharge time	Selectable from $20 \mathrm{~ms}-1 \mathrm{sec}$.
Fixed stages/ skipped stages	Programmable
Alarm relay	Standard
No-voltage triggering	Standard
Display of power-line parameters	Power factor, voltage, apparent current, frequency, reactive-, active-, apparent power, missing kvar, temperature, harmonics
Storage of maximum values	Voltage, reactive power, active power, apparent power, temperature
Temperature measurement range	$-30 . .100^{\circ} \mathrm{C}$
Error memory	Last 40 error states are stored
2nd parameter set ᄅ	Available at version -T12/S
Accuracy	Current, voltage: 1\%
	Reactive-, active-, apparent power: 2\%
Housing	Switchboard-integrated housing DIN $43700,144 \times 144 \times 53 \mathrm{~mm}$
Weight	1 kg
Operating ambient temperature	-20 to $+60^{\circ} \mathrm{C}$
Protection type to DIN 40050	Front: IP 54, Rear: IP 20
Safety guidelines	IEC 61010-1:2001, EN 61010-1:2001
Sensitivity to interference	EN 50082-1:1995
(industrial areas)	IEC 61000-4-2: 8 kV
	IEC 61000-4-4: 4kV
Option ...T12/S	Additional external input
	Additional user programmable message relay

No.	Control series	Loop connection
1	$1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1$	Possible
2	$1: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2$	Possible
3	$1: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3$	Possible
4	$1: 2: 3: 4: 4: 4: 4: 4: 4: 4: 4: 4$	Possible
5	$1: 2: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4$	Possible
6	$1: 2: 3: 6: 6: 6: 6: 6: 6: 6: 6: 6$	Possible
7	$1: 2: 4: 8: 8: 8: 8: 8: 8: 8: 8: 8$	Possible
8	$1: 1: 1: 1: 2: 2: 2: 2: 2: 2: 2: 2$	Possible
9	$1: 1: 1: 1: 1: 6: 6: 6: 6: 6: 6: 6$	Possible
10	$1: 1: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2$	Possible
11	$1: 1: 2: 2: 2: 4: 4: 4: 4: 4: 4: 4$	Possible
12	$1: 1: 2: 2: 4: 4: 4: 4: 4: 4: 4: 4$	Possible
13	$1: 1: 1: 2: 2: 2: 2: 2: 2: 2: 2: 2$	Possible
14	$1: 1: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3$	Possible
15	$1: 1: 2: 4: 4: 4: 4: 4: 4: 4: 4: 4$	Possible
16	$1: 1: 2: 4: 8: 8: 8: 8: 8: 8: 8: 8$	Possible
17	$1: 2: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3$	Possible
18	$1: 2: 3: 4: 4: 8: 8: 8: 8: 8: 8: 8$	Possible
19	$1: 2: 2: 4: 4: 4: 4: 4: 4: 4: 4: 4$	
20	$1: 2: 2: 2: 4: 4: 4: 4: 4: 4: 4: 4$	Possible
"E"	Control-serieseditor	

Control-series editor (programming up to a rating of 30)

The control-series editor allows the user to simply define his/her own control series if the required control series is not available for any reason.
The last control series - Control Series E-is selected by pressing the "Programming" key (point 4: Control series) and confirmed with ENTER. This leads to the insertion of an additional menu point in the main menu $->$ the control-series editor. It may be reached via the "Operating Mode" key.

In the control-series editor, all stages can be set in succession to the desired value with the selection keys \uparrow / \downarrow. The next stage in each case is reached by pressing ENTER.
In the control series editor, the various steps may be programmed up to a rating of 30 (!). The rating >9 is indicated in the display as follows:
$10=A, 11=B, 12=C, 13=D, 14=E, 15=F, 16=G \quad \ldots .30=U$
ALL control series can be generated (even downwards). The customer will decide whether the generated control series is of sense.

The maximum number of stages can be limited by a programmed END STOPP <12.

Annex 2: Default settings

Note: The following values for the default settings apply only if the controller is supplied directly from the manufacturer. Otherwise, these values may have been replaced by settings made by the manufacturer of the compensation network (optimal values for the relevant network).

No.	Parameter (* as option)	Default setting	Programmed values of this system (to be entered by manufacturer or operator)
0	LANGUAGE	ENGLISH	
1	I CONVERTER prim.	1000 A	
2	I CONVERTER sec.	5 A	
3	END STOPP	12 (6)	
4	CONTROL SERIES	1	
5	CONTROL PRINCIPLE	INTELLIGENT	
6	POWER 1. STAGE	25.00 kvar	
7	TARGET COS-PHI	0.98 IND	
8	MEASURING VOLTAGE	230 V L-N	
9	V- CONVERTER RATIO	- NO-	
10	SWITCH- IN TIME	1 sec .	
11	SWITCH- OFF TIME	1 sec .	
12	DISCHARGE TIME	0.2 sec .	
13	ALARM TEMP.	$55^{\circ} \mathrm{C}$	
14	MESSAGE RELAY*	OFF	
15	TEMP. FAN ON *	$30^{\circ} \mathrm{C}$	
16	EXTERNAL INPUT*	OFF	
27	DELAY ERROR MESSAGE	20 sec .	
已	2nd parameter set*		Default values are the same as in the 1. parameter set
	Capacitorstages	AUTO	
	Password Expert mode 1	6343	
	Password Expert mode 2	2244	Cannot be changed
	Trigger value	66\%	
	Max.simult.switch.power	$4 \times$ smallest stage	
	Operating lock	- NO-	
	Phase shift U/I	0°	
	Power 1. stage	0... 255 kvar	
	Control	3 - phase	
	Protocol*	MODBUS-RTU	
	Baudrate*	38400/NONE	
	Address*	1	
	Numbers of MMI6000*	1	
	ASCII delivery time*	10 sec.	

Annex 3: Coupling of two PFC-systems using two PF-controllers BR6000 (no sum current transformer required)

Application example:

Two separate PFC systems installed at two transformers; coupling and decoupling of the two transformer LV grids possible.

1) Coupler open: Both systems work completely independent.
2) Coupler closed: Due to controller coupling, the two PFC systems are operated in parallel. This operation mode avoid an undesired mutual interaction of the PFC systems when operated at one common busbar (oscillation).

Description:

In case of this controller coupling the currents of both controllers are registered. The measured values are transferred to the "Master", that controls and synchronizes both controllers via interface. No additional installation is necessary.

Installation:

Coupling of two PF-controller BR6000 is done via their system interface via standard LAN-cable CAT5 . The signal "coupler switch closed" (24VDC) has to be input at the external potential free input of one controller (will be the "Master"). This master controller has to be programmed as given here.

Programming:

1. Only to be done at the "Master"-controller: PROGRAM MODE: 16 EXTERNAL INPUT: COUPLING
2. Controller in the 2nd system:

EXPERT MODE (6343): 19 PROTOCOL: MODBUS RTU
20 BAUDRATE: 38400
21 ADRESS: 1
No additional settings are required.

Annex 4: Capacitor current monitoring using MMI6000

For permanent current monitoring inside the compensation system the MMI6000 is recommended as an accessory for the BR6000. This measuring device is able to determine the sum current of the complete PFC system as well as the current of single capacitor branches.
By monitoring the current of the installed capacitors, extraordinary grid conditions (e.g. harmonic currents which may cause an overload of capacitors) can be identified. In such a case, the power factor controller switches off the relevant compensation stages as long as the extraordinary situation continues. Monitoring of the capacitor current also means monitoring of the capacitor condition (damages, aging ...) and thus gives the opportunity to avoid consequential damages.

The MMI6000 will improve the reliability and safety of a PFC-system.

Method of operation:

The MMI6000 measures the sum current inside the PFC system. For this a current transformer has to be installed at the power input of the compensation system. During each switching operation, the actual current change is measured and compared to the rated current of the switched capacitor(s). In between the switching operations the current of the complete system is monitored.

If the measured current of a step is too low (default 60\%), this step is switched off. The relay is deactivated and the BR6000 display shows "E" (error) for this step. The alarm relay is activated. A reactivation of the step is possible in manual mode.
In case the current of a step is too high (default 115\%), this step is also switched off. The BR6000 display shows an inverted capacitor symbol. The current is further on checked periodically is the rated current reached again, the step is reactivated.
Is the sum current of the complete PFC system too high (default 115\%), stages are switched off one after another and alarm relay is set. Periodical measurements are performed to check whether the current reaches the nominal value again. If so, the step is reactivated.

Settings MMI6000:

- Operation mode: Coupling MMI-BR6000-T
- Grid: 3-phase (DS)
- Baudrate: 38400

Settings BR6000-T: (ExpertMode)

- Protocol: Master-MMI
- Baud rate: 38400
- Number of MMI connected
- Upper limit (\%), lower limit (\%) (limits of the capacitor / system output)

Principle circuit diagram:

CAUTION:

- For the bus-connection a shielded cable has to be used!
- Bus-connections (in and out) have always to be made directly to the relevant device!
- The terminating resistors inside the connected devices have to be activated (DIP-switch ON).
- Smallest switching time in this mode has to be $\mathbf{2 0 0} \mathbf{~ m s}$!

Annex 5: Mixed dynamical compensation system and cascading controllers

A mixed dynamical compensation system implements economically the advantages of a dynamic fast network. (Fast changing loads are compensated dynamically and basic loads / slowly changing loads are compensated conventionally)
For designing a mixed-dynamical compensation system a special controller was developed. The BR6000-T6R6 supports up to 6 transistor-outputs (for triggering thyristor modules) and additional 6 relay-outputs for standard capacitor contactors. Please compare the separate manual.

In case more than 6 dynamical and 6 conventional stages or more than 12 standard-stages are required, the following application is supported:

Hybrid-system with 1 dynamical and 1 or $\mathbf{2}$ standard controllers

Programming in "Expert-Mode1:"

PROTOCOL:
BAUDRATE:
ADRESS:
No of... :
[Master Hybrid]
[38400]
BR6000-R12 [1], [2]

[Slave Hybrid]
[38400]
[1]
[Slave Hybrid]
[38400]
[2]

LAN-cable (CAT5/CAT6)

BR6000-R12/S
BR6000-R12/S

Annex 6: Register MODBUS Protocol

A detailed description of the MODBUS-protocol parameters (last version) is available at the software-CD, which is included in delivery with each BR6000 device with interface. (BR6000-T12/S485)

MODBUS protocol - example

MODBUS - Functioncode 3 (only-read-register) example meas. voltage					MODBUS - Functioncode 6 (only-write-register) example remote-control (Remote-ON)		
			answer				
Byte 1:	Slave Adresse		SI. Adress	1	Slave Adresse	1	1
Byte 2:	Functioncode	3	Funct. code	3	Functioncode	6	6
Byte 3:	Reg.start adress "H"	0	No of Bytes	2	Registeradr. "H"	0	0
Byte 4:	Reg.start adress "L"	20	Data H	0	Registeradr. "L"	40	40
Byte 5:	Reg. number "H"	0	Data L	233	Reg.value H (Data1)	1*	1
Byte 6:	Reg. number "L"	1	CRC L	121	Reg.value L (Data2)	3*	3
Byte 7:	CRC testcode "L"	196	CRC H	202	CRC testcode "L"	72	72
Byte 8:	CRC testcode "H"	14			CRC testcode "H"	83	83

NOTE:
Due to the priority of the control function of the power factor controller before data exchange, please consider that per command 12 consecutive values maximum (s. table) are transferred blockwise.
Also, parameters should not be retrieved more than $1 \mathrm{x} /$ second.
Settings: 8 data bit, 1 stop bit, no parity

Annex 7: Screens of Windows-software "BR7000-Soft"

Software and description at CD - included in delivery with "BR6000-T12/S485"

Software supports BR6000/BR7000

Configuration manager

Display-Mode

Grid parameter table

Harmonics diagram

AUTO MODE

Accessories

Multi Measuring Devices
MMI 6000 \& MMI 7000

MMI 7000

RJ45 adapter connectors for PF controllers and MMIs.
Terminal to RJ45 converter to connect the devices via RJ45standard cable.

Thyristor-switches different types: TSM-LC / TSM-HV 10 ... 200kvar / 400 ... 690V

